AI Judges and Evaluation
This section covers AI-powered evaluation and quality assessment for Spring AI Watsonx.ai applications.
Overview
AI Judges are specialized models or systems that evaluate the quality, accuracy, and appropriateness of AI-generated content. They help ensure your AI applications meet quality standards and perform as expected.
Evaluation Concepts
Response Quality
Assess the quality of model responses:
Relevance: Does the response address the query?
Accuracy: Is the information correct?
Completeness: Does it cover all aspects?
Coherence: Is it well-structured and logical?
Evaluation Metrics
Common metrics for AI evaluation:
Semantic Similarity
Compare response to expected output:
double similarity = evaluator.semanticSimilarity(
actualResponse,
expectedResponse
);
Factual Accuracy
Verify factual claims:
boolean isAccurate = evaluator.checkFactualAccuracy(
response,
knowledgeBase
);
Toxicity Detection
Check for harmful content:
ToxicityScore score = evaluator.analyzeToxicity(response);
Evaluation Strategies
Model-Based Evaluation
Use AI models to evaluate AI outputs:
@Service
public class ModelBasedEvaluator {
private final ChatModel judgeModel;
public EvaluationResult evaluate(String prompt, String response) {
String evaluationPrompt = String.format("""
Evaluate the following AI response:
Prompt: %s
Response: %s
Rate on a scale of 1-10 for:
- Relevance
- Accuracy
- Completeness
- Clarity
Provide scores and brief justification.
""", prompt, response);
String evaluation = judgeModel.call(evaluationPrompt);
return parseEvaluation(evaluation);
}
}
Rule-Based Evaluation
Define explicit rules for evaluation:
@Service
public class RuleBasedEvaluator {
public EvaluationResult evaluate(String response) {
EvaluationResult result = new EvaluationResult();
// Check length
if (response.length() < 50) {
result.addIssue("Response too short");
}
// Check for required keywords
if (!containsRequiredKeywords(response)) {
result.addIssue("Missing required information");
}
// Check formatting
if (!isWellFormatted(response)) {
result.addIssue("Poor formatting");
}
return result;
}
}
Human-in-the-Loop
Combine automated and human evaluation:
@Service
public class HybridEvaluator {
private final ModelBasedEvaluator autoEvaluator;
private final HumanReviewQueue reviewQueue;
public EvaluationResult evaluate(String prompt, String response) {
// Automated evaluation
EvaluationResult autoResult = autoEvaluator.evaluate(prompt, response);
// Queue for human review if uncertain
if (autoResult.getConfidence() < 0.8) {
reviewQueue.add(new ReviewTask(prompt, response, autoResult));
}
return autoResult;
}
}
Testing and Validation
Unit Testing
Test individual components:
@Test
void shouldGenerateRelevantResponse() {
String prompt = "What is Spring AI?";
String response = chatModel.call(prompt);
assertThat(response).contains("Spring", "AI");
assertThat(response.length()).isGreaterThan(50);
}
Integration Testing
Test end-to-end flows:
@SpringBootTest
class ChatIntegrationTest {
@Autowired
private ChatService chatService;
@Test
void shouldHandleComplexQuery() {
String query = "Explain RAG in simple terms";
String response = chatService.chat(query);
assertThat(response).isNotEmpty();
assertThat(response).containsIgnoringCase("retrieval");
assertThat(response).containsIgnoringCase("generation");
}
}
Benchmark Testing
Compare model performance:
@Service
public class BenchmarkService {
public BenchmarkResult runBenchmark(List<TestCase> testCases) {
BenchmarkResult result = new BenchmarkResult();
for (TestCase testCase : testCases) {
long startTime = System.currentTimeMillis();
String response = chatModel.call(testCase.getPrompt());
long duration = System.currentTimeMillis() - startTime;
result.addResult(new TestResult(
testCase,
response,
duration,
evaluateQuality(testCase, response)
));
}
return result;
}
}
Quality Assurance
Automated QA Pipeline
Code Change → Unit Tests → Integration Tests →
Quality Evaluation → Human Review → Deployment
Continuous Monitoring
Monitor production quality:
@Service
public class QualityMonitor {
private final MeterRegistry meterRegistry;
public void recordResponse(String prompt, String response) {
// Record metrics
meterRegistry.counter("ai.responses.total").increment();
// Evaluate quality
double quality = evaluateQuality(response);
meterRegistry.gauge("ai.responses.quality", quality);
// Alert on low quality
if (quality < 0.7) {
alertLowQuality(prompt, response, quality);
}
}
}
A/B Testing
Compare different approaches:
@Service
public class ABTestingService {
public String chat(String prompt, String userId) {
// Assign user to variant
String variant = assignVariant(userId);
ChatModel model = getModelForVariant(variant);
String response = model.call(prompt);
// Track metrics by variant
trackMetrics(variant, prompt, response);
return response;
}
}
Best Practices
Evaluation Guidelines
-
Define clear criteria: Establish what "good" means
-
Use multiple metrics: Don’t rely on single measure
-
Include edge cases: Test boundary conditions
-
Regular updates: Refresh test cases periodically
-
Document findings: Keep evaluation records
Quality Standards
-
Accuracy threshold: Minimum 90% factual accuracy
-
Response time: Under 5 seconds for most queries
-
Relevance score: Above 0.8 on similarity scale
-
Safety checks: Zero tolerance for harmful content
Continuous Improvement
-
Monitor production metrics
-
Collect user feedback
-
Analyze failure cases
-
Update evaluation criteria
-
Refine prompts and models
Tools and Frameworks
Evaluation Frameworks
Spring AI Test Support
@SpringAITest
class ChatModelTest {
@Autowired
private ChatModel chatModel;
@Test
void testChatModel() {
// Test implementation
}
}
Custom Evaluation Framework
@Configuration
public class EvaluationConfig {
@Bean
public EvaluationFramework evaluationFramework() {
return EvaluationFramework.builder()
.addEvaluator(new SemanticEvaluator())
.addEvaluator(new FactualEvaluator())
.addEvaluator(new SafetyEvaluator())
.build();
}
}
Monitoring Tools
-
Prometheus for metrics
-
Grafana for visualization
-
ELK stack for logging
-
Jaeger for tracing
Future Enhancements
Planned improvements for evaluation:
-
Automated test case generation
-
Advanced similarity metrics
-
Multi-dimensional quality scoring
-
Real-time quality dashboards
-
Predictive quality models